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1.0 INTRODUCTION

We address here methods for triangulating orbital frame photography

with rigorous accounting for spacecraft dynamics. Triangulation of

o’LbA~.taL photography was established as an important survey tool, by the

extensive mapping of the Moon accomplished by triangulation of orbital

• photography (beginning with the Lunar orbitor photography and continuing

through the Appolo missions), and by more recent extra—terrestial and

terrestial applications and studies.

Several issues need to be focused to appreciate the developments

herein. Dynamical models of the camera bearing vehicle’s motion, from

one view, are unnecessary. As has been the tradition in triangulation

of aerial photography (and mostly, orbital photography), it is possible

to construct workable triangulation algorithms based solely upon prin-

ciples of geometric optics. Perhaps the first question a skeptic might

raise is: “Why clutter the (otherwise algebraic equation) scene with

differential equations that must be solved numerically?” Enforcement of

dynamical constraints imposes a physical truth (to an essentially negli-

gible degree of approximation, the camera motion ~L~6 governed exactly by

Newton’s laws of motion) — as a direct consequence of introducing

dynamical constraints, one whouJ.d expect to more closely recover the

true camera position. The number of unknown parameters subject to

differential correction is usually reduced as a conseçuence of intro-

ducing dynamical constraints; thus the normal equations have corres—

pondingly reduced dimensions. Thus computer storage, run time, and

precision considerations generally favor the dynamically constrained

approach. The use of a dynamical model in orbital triangulation allows
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one to restrucuture the triangulation process as an “iterative, extented

Kalman estimation algorithm” with mos t significant computational ad-

vantages .

The above comments are fully supported by the results presented

herein.

2.0 DYNAMICALLY CONSTRAINED TRIANGULATION: SUMMARY OF BASIC EQUATIONS

2.1 Colinearity Equations

In the process of satellite photogrammetric triangulation, the

earth fixed object space coordinates of various earth surface features

can be deduced from satellite photograph coordinates of the images of

those features. The fundamental mathematical transformation central to

:
1 

this process is based solely on the principles of geometric optics and

can be deduced from the geometry shown in Figures 1 and 2. This trans—

formation (the colinearity equations) can be written [1] as

rc (x -x ) +C  (Y - Y ) + c  (z — z f li l l p c l 2 p c  l 3 p  c ix — x — f 
LC31(X

P
_X

C ) + C32 (Y
~

_Y
~

) + C33(Z~
_Z
~)J 

(la)

rc2 (x - x ) + c  (Y - Y ) + C  (z -z fl
— 

l p c  2 2 p c  2 3 p c 1 lb
~‘p “° ~C31~~ p

_X~) ÷ C32 (Y
~

_Y
~

) + C33(Z
~

_Z
~)J

Equations (1) project the position of a point located at objec..t coordi-

nates (X~~ Y , Zr,) into its ~ôn~ge~ plane coordinates (x
v . y )  for a

camera with principal point offset (x0, y
0) and focal length f The

perspective center of the camera is located at obje~c.t space coordinates

(Xci Y , Z). The A.mage space (x y,z) axes are oriented relative to the

obje.cL space (X,Y,Z) axes by the direction cosines Czm ; 9.,m — 1,2,3.

Equations (1) can be written functionally as

2
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x = F(X ,Y ,Z ,X ,Y ,Z ,C ,x ,f )
P p p p C C C ~mj ~ (2)

yp = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If several points are considered in each of ii photographs , Equations (1)

and (2) can be doubly subscripted to denote the equations corresponding }
to the ith point in the j th  photograph as

x — F(X ,Y ,Z ,X ,Y ,Z ,C ,x , f )
Pjj  i’~. P1 P1 C

j  
C
j  

C
j  

Lm~ o~ i

(3)

y — G(X ,Y ,Z ,X ,Y ,Z ,C ,y ,f j ) .
Pjj P1 P1 P1 c

j c~ c
3 

Lm~ o~

Equations (3) can be segregated into subsets depending on whether or not

the particular point is a con.titoL poi.n.t (i.e. one for which there exists

apriori knowledge of its object space coordinates). Other points having

distinctly measurable image plane coordinates in two or more photographs

are unknown and are called pa64 po~L,vt4. Depending upon the number of

photographs in a strip, the number of strips with sidelap, the number

and distribution of control points, the number of pass points and the

) manner in which they are shared by adjacent photographs, an intimidating

variety of observation equations of the form (3) can be defined in

practical applications. It is not uncommon to encounter several thou—

sand such nonlinear equations containing several hundred unknowns. An

• obvious computational burden is associated with the least squares

solution of this class of problems.

In the traditional approach to this problem, the camera center

coordinates (X ,Y ,Z~ ) and three camera orientation angles (~ ,O~,’I’ )C
j  

C
j  

~ 

j j  j

for each photograph (it is possible to replace the direction cosines

CL ;  as functions of three orientation angles), as well as the pass

point coordinates have been treated as independent unknowns . The

introduction of orbital dynamical constraints, conceived by Brown [2,3]

j  ____________



7

the elimination of the 3n (n = number of photographs) camera center

coordinates in favor of 6 osculating orbital elements. One purpose of

this work is to carry the incorporation of dynamical constraints to its

logical conclusion through rigorous satisfaction of the satellite

equations of rotational motion. This process allows the further re—

duction of unknowns from 3n orientation angles to 6 osculating attitude

elements or constants of the rotational motion.

• • 2.2 Orbital Dynamical Constraints

The essence of orbit constrained photogrammetry is the recognition

that the camera exposure stations along a given strip of n photographs

are dynamically constrained according to

X = X ~~~~~~~~~~~~~ ,c6)
3

= Y (t~~ c1~ c2~ .. . ,c6) j  = 1,2,... ,n, (4)
3

Z = ~~~~~~~~~~~~~~~~~

where Equations (4) are functional representations of the solution of

the 5pa~ecraf~~5 translational equations of motion. The 6 constants

(c1,.. . ,c6) can be any set of initial conditions or osculating orbital
• elements which uniquely define the orbit. The least squares solution of

the photogrammetry problem is modified to include the dynamical con-

straints as follows: Current estimates of c1,c2,..., c6 ace used in

Equations (4) to compute X “fe ~
Zc 

at each photograph exposure time
i i  j

~~~ the resulting estimates of camera exposure coordinates are used in

Equations (3) together with the other parameter estimates (X ,Y ,Zpi P~ P
~

•4,O1,~~ ,x ,y ,f4) to determine currer,t computed values of x ,y
~ j j ~ ~ij 

Pjj
which are in turn dirrerenced from the corresponding observed values to

find the Current residual vector. The partial derivatives of the

5



.1
observation Equations (3) with respect to the orbital elements, c1,

c2,... ,c6 
(the elements of the “A” matrix) are determined by the chain

differentiation rule applied to Equations (3) and (4). For example

ax ax a~
= aF c

i + 
aF 

____ + ~~ ____

ax ac ai 9c az ac1 c. 1 c 1 c . 1
3 1 3

The partial derivatives with respect to the other parameters are iden-

tical in form to the corresponding equations for unconstrained photo—

grammetry . Depending on problem requirements, various specific forms of

Equations (4) are available and the corresponding partial derivatives

readily obtainable. Further discussion of orbital constraints is found

in the work of Brown [2,3], Light [4], Hartwell [5], and Blanton and

[I Junkins [8).

As an alternative to recovery of the orbit simultaneously with the

triangulation process , one can use tracking data to recover the orbit

~zpiio/u~, to within small clock biases, and often acceptable precision.

The photomeasurements , in most cases will provide only marginal improve-

ment in the orbit resolution due to the recent advances made in tracking

systems for orbit determination. In any event, the triangulation should

be dynamically constrained in the sense that the sequence of exposures

lie along a dynamical path.

2.2 Rotational Dynamical Constraints

j The incorporation of rotational dynamical constraints is, in con-

cept, very analogous to introduction orbital constraints. The details,

• however, are somewhat more complicated. The direction cosines CL

contained in Equation (1) can be written as functions of three angles

orienting the camera {c} axes relative to the earth {e) axes as

{c} [C] (e} (5)

where

6



• - rc~ si~ ol ~ ~ —~~~ 1 ri ~ce ce ce ce~
[C] = 

t~
’
~~
4’ce ~~ 0 0 1 0 0 C+~~~ 

~~ce 
(6)*

L o o i.J [~e 0 c O J  
~~ ~~~ce 

CI~

This is the ciassical approach; each set of three orientation angles (for

each of n exposures) are treated as n independent sets of three unknowns

in the triangulation process.

Perhaps the most obvious approach (to introduce rotational dynamical

constraints) is to derive a set of differential equations describing the

~~ce’
6
ce’~ ce~ 

angles and recover the six initial conditions (on these

three angles and their first time derivatives) in lieu to treating the

3n angles as independent unknowns. Several factors should be considered ,

however. First, rotational dynamics is most naturally approached by

viewing the motion from a non—rotating reference frame rather than an

earth—fixed frame. Second, care should be taken to avoid the singularity

that exists for certain orientations = + r/2, in Eqn. (6)] for any

choice of orientation angles. One should allow efficient advantage to

be taken of on—board angular motion measurements (e.g. rate gyros , star

sensors, sun sensors, etc.). In view of these considerations, we

introduce (in lieu of $ce~
0ce~~

1ce
) the angles (4~~~,6 ,~~~) orienting the

camera relative to an “orbiting” frame which maintains axes in the local

radial, transverse, and normal directions so that (see Appendix 2)

[Cl [CNI [CO][OO’][O’N][ENI
T (7)

where

r
~~~0 ~~~~~~~ 01 rce~o 0 

~
sO c~c,~ [1 

0 0 1
[CO l = 

F~~
co c~, 0 0 1 0 0 C$co ~

4
~co 

(8)

L 0 0 iJ Lse 0 cc ]  Lo —a c~~~J

*For rotational compaction , we use “c” for “cosine” and “s” for “sine”.
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where

= spacecraft moments of inertia about mass center with axes
oriented parallel to image plane axes.

- 

~~~~ 
,w }  = spacecraft angular velocity, comp~-1ents along camera

image plane axes

{L ,L ,L }  = effective external torque acting on the spacecraft;y 
components taken about mass center with axes parallel
to camera image plane axes.

(A) (A)
x gx

w = [CG] w
y gy

U) U)
z gz ,

~~ x ’~ ~~ 
= angular velocity components along rata gyro ’s threeg gy g 
orthogonal axes.

[CG] = assumed constant 3 x 3 interlock direction cosine
orienting the camera axes with respect to the rate gyro
axes.

In the event that the particular spacecraft departs significantly from the

rigid body assumption (e.g., significant internal moving masses, vibration

of flexible appendages), additional forcing terms will appear on the RHS

of Eqn. (13), and one additional, coupled , differential equation for each

such mechanical degree of freedom must be written. The kinematical

• Equation (13), however , holds rigorously for the motion of the camera axes ,

regardless of what torques are present and regardless of departures of

the actual body model from the rigid body assumption. To employ Eqns. (12)

as the starting point for modeling rotational dynamics requires excellent

mathematical models for the actual torques (L ,L ,L) present and for

any significant departures from the rigid body assumption. This viewpoint

was pursued initially under this contract and yielded in the results

published in References 7 and 8 (abstracted below in section 3.1).

The fact that Eqn. (13) is rigorously valid (regardless of the torque

history and actual body flexibility) and since true angular velocity can be

measured (by conventional rate gyros) motivates a Wt~.c..t ~~~ 4..rUtegfl..a.tA.On

_ _ _ _  
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approach to imposing the rotational motion constraint. This approach

leads one to consider the wisdom of bypassing the necessity of modeling

the spacecraft flexibility and torque history by directly integrating

Equations (13). This latter viewpoint has been investigated during this

research project and doc~ prove to be the most attractive option.

The orthogonal axes of the rate gyro package generally has some

orientation other than the camera axes, thus we must account for the

gyro—to—camera interlock rotation as

U) U)x gx
(A) = [CG] U) (14)
y gy

(A) U)
z gz

where [CC] is a nominally constant, 3 x 3 interlock direction cosine

matrix, and the measured angular rates are

(A) (A) bx~ vgx gx x

U) = + by 1 + v (15)
gx gy y

(A) U) bz v
gz gz Z

{Measured} = {True} + {Bias} +{Measurement}
Noise

If one substitutes the raw data (w ,w ,~~~ ) through (14) directly Intogx gy gz

(13) and integrates to determine the angular rate history, the effects of

• the uncompensated rate biases 
~~~~~~~~~ 

and noise (V
x~~

V
y~~

V
z

) will

typically result in unacceptably rapid divergence of the integrated orien—

tation history from the true orientation history. The results of numerical

experimentation with typical noise levels (1 arc sec/sec) and bias values

led us to conclude that the measured rates should be passed through a

noise pre—filter (section 4) to obtain a filtered angular velocity

history :

9



—~-— [C] = [.
~~~~

— [CO]] [00’] [O’N] [EN ]T (18)

where we need

rc~p si~ O~1 rco 0 —sO ‘

~~ 
ITI 0 0 ~I co CO I I co C o I

a [CO ] ~ ( t )  L~ ~~ o 1 0 1 0 I 10 _S, c4~
— Co

I CO CO Iii;-:; 
— 

ap
1 I CO CO I
[0 0 1] ~~ 0 cO I 1 0 —c+ —s+co col L co Co-a

rc* sip o1 1
~sO 0 —cO ~1 [1 0 0

ac (t )  
CO Co I I CO CO I

+ Sap 1 co co I CO CO I~~ ° 
• L U 0 0 I

[0 0 ij cO 0 —sO J 1~ ~ cq
co co L

• Esip ci~ 0~ ~~CO 0 —sO 1 0 0I co Co I I CO CO I
3ij, ( t )  

~ 
_ 0 0 1 0 I 10 C. sip

Co

CO CO I+ C I co Co I• L o 0 0] se 0 cO j 6. —sip cip JL co co CO CO

I = 1,2,3. .6, (19)

The partials 
C0 CO CO

] are obtained by integrating theap 1
matrix differential equations

• 10 0

~ (t,t0
) = F(t)c~’(t,t )  , O(t ,t ) = 0 1 0 (20a)

° 0 0 1
and

= F( t)’Y (t,t ) + B(t) , ~‘(t ,t ) = [0] (2Gb)
0 0

where
3 [ ip (t),O (t),~~0

( t) ]
= CO CO

~ (t,t )  — [3 [4( (t ) , O (t ),ip (t ) ] ] (2la)
CL’ 0 CO 0 0

aj i p (t ) , O (t),ip (t)]
CO 0 CO co

‘I’(t,t0) 1a[b~ ,b2,b3] 
] (2lb)

3x3
[F( t) ]  = 

a [right hand side of Eqns. (17)] (22 a)a [ i p  (t),G (t),~~~0
(t)]

CO CO

3x3
[B(t)] 

a[right hand side of Eqns. (17)) (22b)
• a[b 1,b2 , b3]

The partials (22) are taken by direct differentiation of Equations (17).

11
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2.4 OBSERVATION EQUATIONS FOR DYNAMICALLY CONSTRAINED PHOTOGRM4METRIC
ADJUSTMENTS

2.4.1 Basic Notations

Linearization of the colinearity equations (1) leads to the matrix

equation*

L~Y = A ~~X + E  (23)

where ~Y = mxl matrix of “measured minus computed” residuals of x , J
p
1.1

y orp
11

H 1~xH ~- 
p11

I
• 

p11

p21
1~yp21

• {AY} = (24)

[A] = = in x n matrix (m > n) of partial derivatives of the (x
X Pjj

y ) with respect to the elements of the vector {X} ofPu
unknown parameters, evaluated with the currect best estimates

of K. (25)

{~X} 
= an n x 1 matrix of desired corrections to the parameter

vector {X}

(El = 1Y — A 1~X — an m x 1 matrix of “errors after the solution”

associated with any choice for ~X. (26)

*Subscript i j  denotes ith point measured on the jth photograph.

12



The least squares solution for Ax minimizes ETW E and is well known to be

the normal equations AX — (ATWA) 1ATWAY where W is a positive def inite

weight matrix.

For traditional (unconstrained) photogrammetric adjustments, the

{X} vector can be partitioned as

• .. {XYZC }

(Xl = {ip oip } (27)

S.

where

X
• Cl

Y• C
l

zc
1

{XYzC } = = matrix of camera exposure (28)
stations ’ coordinates

+1

01

*1

matrix of “1—2—3” camera orientation angles
(depending upon the option uaed, these may (29)
relate camera axes to the instantaneous radial

j transverse, and normal directions; or directly
to the earth—fixed axes).

~1
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:i
x Ip1
‘1p1z
p1

{XYZP}” matrix of pass points’ coordinates (30)

x
pi
Y
P1.
z
P1

and the matrix of partial derivatives can be similarly partitioned as

[A] = [[AXYZC ] [Aip0i~J [AXY ZP J ]  (31)

where the submatrices are

Ii(X , Y , X , Y ;...;X , Y ; . . . )  1
• (AXYZC I — [a(x~~ 

P11 P21 
, , z ; . ;  x Y , Z ;...)j (32)

C
1 

C
1 

C
1 

C2 C2 
C

2 
C
j  

C
1 

C~

• a(X , Y ; X  , Y ;...;X , Y ; ...)1
— 

P11 ~~ 
P21 P21 P j j  P11 I (33)

“ l’ ~~ 
Ij)1, 

~2’ O2~ ip2;...; •3~ ~~ *~~; .  ..)J
and

ra(x , Y ; X  , ‘f ; . . . ; X  , Y ; . . . )  1
Pu. P2~ 

, z ; 
~~~~~~~~~ ~~~ ~ ‘ ~~ ; ~~~~~~~ 

(34)

p
1 

p1 
p
1 

p2 p2 p2 ~
‘j  I’i ~

‘i J
If one Introduces translational dynamical constraints, then (for a single

strip of photographs and using the simplifying assumption that the n ex- A

posure times are perfectly measurable) the {X} vector (27) and A matrix

(31) become

{ OE)

(xl — (35)

(XY ZP )

14



and

[A] — ([AOE ] [Aipoip] [AXYZP~) 
(36)

where

GE
0E1

GE — •
2 — a set of six orbit elements defining the best

fitting orbit (for example, the initial orbit
• OE state vector (X , y 

, z , x , , z ~~. 
37)

6 o o o o o o

and

ra (x , Y ; X  , Y ; ...; X , Y ; ...fl

[AGE] a I ~
‘il ~

‘1i ~~2l P 21 I’j j ~
‘i j  (38)

L~ (GE 1, oE2, . . . ,  GE6) J
If one introduces both translational and rotational dynamical constraints,

then (again, for a single strip of photographs), the {x} vector (27,35)

and the A matrix (31,36) become

- I 
~~E}

~c) — ~ .E} ( 3 9 )

{x’~zP)

and

[A] = ([AGE ] [AAE] [AXYZP ]) (40)

where

AE1

{A E } — . — a set of six attitude elements defining the
best fitting attitude solution (for example,
the initial orientation state vector , ip , 0

AE6 ‘ b b b ’  ° °• ‘o’ 1’ 2’ 3/

and

ra (x , Y ;X , Y ; ... X , Y ; ...)1
r AAE 1 a I ~11 P~~~ P 21 P 21 P~~1 

P 11 ~ 
(41)

L La (AE1, 
~~2’ ~~~~~ ~~~~ —‘

The above syinbology may prove difficult to extrapolate to specific

situations, we therefore provide a simple prototype adjustment problem

- 1 15
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.1
as an illustration. It will also be evident that multiple strip (block)

adjustment present no particular difficulties; independent dynamical

constraints are introduced for each strip of photography .

2.4.2 An Example Adjustment Problem Setup

Referring to Figure 3, an idealized block adjustment of 2 strips

containing 5 photographs each is considered. Six complete ground control

points are indicated by “.“, 19 pass points are located at each “.“

and under each photo’s principal point (“+“). Thus, in this idealized

adjustment problem, each of the ten photographs has at least one control

point; photos 2, 3, 4, 7, 8, and 9 have a total of 9 measurable points

(108 measurements), while photos 1, 5, 6 and 10 have 6 measurable points

(48 measurements).

We first consider the classical approach in which no dynamical con—

straints are imposed. The total number of equations (one for each measur—

ment) is

#of photos
2 E [measurable points in photography] = 2[6+9+9+9+6+6+9+9+9+6]

j=l
= 156 (42)

• The number of unknowns associated with the 19 pass points is

U of elements in {XYZP } = 3 x 19 - 57 (43)

The number of unknown camera exposure station coordinates is

U of elements in (XYZC} 3 x 10 30 (44)

The number of unknown orientation coordinates is

U of elements In {ipo ip l — 3 x 10 = 30 (45)

Therefore, the total number of unknowns (without dynamical constraints)

is 57 + 30 + 30 1l7.

16
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H - C O L U M N

R O W I ó  I
• 

~I!i.L!_.~~. 2. +1 +2 +3 +~ +5

(Orbit Pass I)

I~)W3 • S

+7 +8 +9 +10
(Orbit Pass 2)

f - i

ROW 5 S S

Fig. 3 An Example Triangulation Block of 2 Strips of 5 Photo—
graphs Each (6 complete ground control points are de-
noted by e, the 10 camera exposure points are indicated
by +, 19 pass points are located at the • and + symbols ,
50Z overlap is assumed along each strip)
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The structure of the [A] matrix for this example (without constraints)

is graphically illustrated in Figure 4. The left, middle , and right parti—

• tions of Figure 2 correspond identically to the partitions of Equation (35).

The shaded areas are the nonzero entries.

We now consider the changes which occur in the structure of the partial

derivative matrix when translation (orbital) constraints are incorporated.

Since two orbital arcs are present , then one dynamical (best fitting) solu-

tion will be recovered for each strip. Thus, we “trade” the 30 unknown

elements in the {XYZC) array for 2 x 6 — 12 unknown orbit elements in a

12 x 1 (GE l array , thereby reducing the total number of unknowns to 117—

18 — 99. The [A] matrix, now modified to reflect the translational con-

straints is shown in Figure 5. Comparison with Figure 2 reveals that only

the left—most partition of elements is modified, but that considerable

• (60%) compression of this partition has been achieved . Not considering

exposure times to be perfectly measurable would result in 10 additional

adjustable parameters (109 unknowns) and a 27% compression of the first

partition of [A].

We finally consider the s t ructure  when both translational ~~~ rota-

tional constraints are imposed. We exchange the 30 unknown orientation

parameters for 2 x 6 — 12 unkonwn orientation elements (1 set of six for

each of the 2 strips). The [A] matrix , sketched in Figure 6 now shows a

602 compression of the center partition (the total number of unknowns is

now 117 — 36 — 81). This 60% compression of the center partition is

achieved even if one must also recover the n exposure times, since these

times would have already been included in incorporating the orbital

constraints. In practice, however, the quality of the gyro data and

auxillary attitude measurements will dictate whether or not this theo-

retical truth results in improved or degraded precision. The simulations
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make a weak case for increased accuracy, but a strong case for increased

computational efficiency .

2.5 Sequential (Kalman Filter) Approach to Dynamically Constrained
• Triangulation

2 .5.1 The Ettended Kafriai’~ FALteit AZgo~’Lthm

Given a system described by nonlinear equations of the form

- • 

• 

X = F (t,X) + V (42)

with measurements modeled by

Y = G(X)+V (43)

where V and V are Gaussian noise vectors with zero mean ; it is assumed
x y

V and V are uncorrelated.
x y

If a sequence of measurements are available

{t1, Y1~ t 2~ Y2~ ~~~ 
~k’

Then the extended Kalman estimation algorithm (see ref. 10) is defined

by the recursions

~~~~ (tk+l) = X
k(tk÷1

) + K(tk+l) ~~k+l 
— G(X k (t k+l ) ) ]  (44a)*

where

X.K(tk+l) = forward *nonljnear) integration of Equation (42) from
L
~
(tk)

K(tk÷l) = P
k
(tk+l) HT(tk÷l) [A + H(tk+l) P(tk÷l) H

T
(tk+l)]

l (44b )

= KaLman Ga.iLrzMa-t’z~ x

P
j(tk+l) 

= 
~
(tk+l, tk

) P
k(tk) ~

T(tk+l, tk) + Q (44c)

Pk+l(tk+l) = X 
— covariance matrix = [I — K(tk+l) H(tk÷l)] Pk(tk+l ) (44d )

• 
-H = [-~j] = partials of the measured variables with respect to the

state vector (44e)

• 
~~

t ,tk) 
= nxn state transition matrix, the solution of the differential

equa tion

t
~
(t,tk) 

[•~j J ~(t ,tk); •(tk , tk) = I (44f)

• *Interpretation of subscripts: X (tk) 
= “the best estimate of X at

time t
k 

based upon the f i r s t  j  da ta su~sets”.
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• Q = process noise covariance matrix variance of x — vector due
to the presence of the noise vector V in Equation (42).

2.5.2 Particularization of the Extended Kalman Estimation Algorithm
to the Constrained Triangulation Problem

The above algorithm can be applied to the constrained triangulation

problem by making the following definitions :

x
Y
z

{oE}
z

X = state vector = {AE} = • • •  (4 5)

{XYzP } 0

b
b’~
b~z

{ XYZP I

then

F ~~~~ (46a)

with

x
Y

{F I 3 (46b)
oe —px/r

3 
+ x—perturbat ion

—j-ty/r3 + y—per turba t ion
—iiz/r + z—per turba t ion

o
‘I (F I = ——— (46c)

ae

= Equation (17)
( 4 )

23
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y l

= the kth particular set of measured image coordinates x~ (4 7)
of images appearing in the kth photograph y2

• : k

H(tk) 
= all pairs of Equations (1), one pair corresponding to each
image measured in the kth photograph .

~H} ~H _ _ _ _ _  
MI MI 311

— 

~a(x,y,z) 3(x,y,z) 3(c~,0,~p) 3(bx ,by,bz) 3(XYzP)1

— 
311 

~~
‘

~
— 

311 48— 
‘3(x,y,z) B(4,0,4~) 3 (XYZP)~ 

( )

= partials of Equations (1) w.r.t.(X ,Y ,Z )

MI
= partials of Equations (1) w.r.t.(~ ,0,C~)

C ‘3(xyzP) = partials of equations (1) w.r.t.(X~~Y~~Z~)

(F I 3{ F  I a( F I

a {oE } a{AE} 0

o 3{ ae} 3{ ae} 
0

— 

1~ 
— 

a{OE} a{AE }

— 0 0 Q
3~~

{ AE }

6x6 3x3 3x3
F

3{OE} — c 0

E(X
2
—r

2/ 3) XY YZ

[G] = -
~~

-
~~

- I XY (Y
2
—r
2
/e) YZ I + oribtal (49c)

r 
~~ (r

2_r2/3)J 
perturbations

3 (F  I

= 0 [zero unless orbital perturbations which depend upon
attitude drag , are included in the force model]

a { F  I

3{oE} = [0] + perturbations
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-
~~~~~

3{ F I ~~~~~~~ ,~~ ,1 ) 3(~ ,O ,4~) 3 ( , Ô ,i~~)

= [
a(.,o,~~,b

X
,b
Y
,b
Z
)1 

= 
~~~~~~~~~~~~~~~~~~~~~~ 3(bx~by~bz~

J 
(49d)

0 0

= partials of Equations (17), w.r.t. ~~~~~~

= partials of Equations (17) , w.r.t., (b
~
,b ,b )

= I :::::~::~;:::ii::::: = Process Noise Matrix (50a)

[0 ‘~xyzp
6x6
Q0 = 0

6x6 rj l2 I 0 1 (SOb )
A gyro (

~ !i= 0

The above algorithm is applied to a dynamically constrained triangulation

problem in section 4.0.

It should be noted that the {XYZP} vector includes only the particular

coordinates of the points measured on the k + 1th photograph ; thus the

computer program requires careful “bookkeeping” which dynam4cally alters

this array and the associated matrices in the Kalman f i l t e r  algorithm to

remain consistent with the (k ÷ 1) th set of elements of {XYZP}.

The Kalman algorithm conveLgence history (ref. 10) leads to

the conclusion that the above algorithm should be interated through

all measurements at least two or three times to obtain the best estimates.

In the absence of process noise (from gyro measurements), Junkins (10)

has demonstrated numerical equivalence between the iterated Kalman

algorithm and the batch least squares algorithm. The presence of process

noise, however, precludes a rigorous application of the batch least squares

algorithm and thereby leaves the sequential Kalman algorithm as the

only practical alternative .
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3.0 BATCH TRIANGULATION EXAMPLES

3.1 Example 1: Torque—Free Case

In this example, we consider ar~ uncontrolled satellite moving in

a 100 mile circular orbit. Two—body orbital dynamics are assumed. The

rotational dynamics is assumed governed by Equations (12) and (13) with

L = L = L = 0 (i.e., a rigid spacecraft, subject to zero external

torque). Equations (12) and (13) have analytical solutions for this case,

and analytical solutions for all required partial derivatives have been

derived (see Ref. 7 and 8). For purposes of illustration, a short

strip of photography was simulated ; corresponding to four photographs

made by a camera fixed in a rigid triaxial satellite from a 100 mile

circular orbit. Two—body translational motion and torque—free rotational

motion were assumed. A single strip of four photographs , each with

approximately 50% overlap was generated. These photographs covered a

ground strip of approximately 100 miles by 250 miles.

Four control points and eight pass points were chosen on the ground

strip and distributed in such a fashion as to give a total of 60 obser-

vation equations. The image coordinates were modified to simulate 1 mu

measurement precision. It was further assumed that the camera focal length,

f, the principal point offset (x ,y) and the camera exposure times were

perfectly known. Initial guesses of the pass point coordinates and

camera center coordinates were corrupted from their true values by an 
T

average of 2 miles. Initial guesses on camera axes Euler angles were

corrupted by an average of 1.5°.

Three separate least squares differential correction programs were

written to illustrate the impact of dynamical constraints:

• UCPHOTO (unconstrained photogramnietry): all parameters appearing in

the observation equations were treated as independent. The dimensions

26
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of the A niatrix* were 60 (observations) x 48 (parameters), where

48 = 3 times the number of pass points plus 3 times the number of camera

center locations plus 3 camera axes Euler angles at each exposure time

= 3(8) + 3(4) + 3(4).

OCPHOTO (orbit constrained photogrammetry): pass point coordinates, camera

orientation at each time and orbit initial conditions were considered

independent. The A matrix was dimensioned 60 (observations) x 42

(parameters), where 42 = 3 times the number of pass points plus 6 orbit

initial conditions plus 3 Euler angles for each photograph = 3(8) + 6 ÷

3(4).

DCPHOTO (fully dynamically constrained photogrammetry): pass point

coordinates, orbit initial conditions and attitude initial conditions

were considered independent. The dimensions of the A matrix were 60

(observations) x 36 (parameters) where 36 = 3 times the number of pass

points plus 6 orbit initial conditions plus 6 attitude initial conditions

= 3(8) + 6 ÷ 6.

The structure of the A matrix for these three cases is shown in

Figures 7a, 7b, and 7c, respectively. The shaded region contains the non-

zero elements. The essential results of these numerical tests were

summarized in Table 1. For this simple problem the best results were

obtained using full dynamical constraints. (Even though the dimension

of the A matrix was reduced from 60 x 48 to 60 x 36, the computer run

time was not decreased). This is because the matrix inversion savings

were offset by the re.atively elaborate dynamical model. The matrix

calculations, however , dominate real world triangulation problems.

Consequently , substantial cost reductions may be achieved in practical

H applications.
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Max pass Pt error Mean pass Std. dev. CX 6400
Program after convergence point error of all central processor

(true — converged) (ft) errors (ft) time (see)
(ft)

UCPHOTO 205.08 12.24 73.58 5.82
OCPHOTO 93.45 —6.36 37.41 5.66
DCPHOTO —57.88 —1.60 25.54 6.86

Table 1 A comparison of the effects of dynamical

constraints on photogrammetric triangulation.

3.2 Example 2: A 10 Photo Strip (Via Batch Least Squares Triangulation)

This example is similar to the DC Photo example above, except in

two respects: (1) instead of assuming zero torque and using the analytical

solution of Ref. 7, the Euler differential equations were integrated

with the true torque history specified , (2) the number of photos in

the strip was increased from 4 to 10 to provide more realistic dimensions

for the demonstration.

138 simulated measurements were calculated for a total of 69

photographic images of 10 control points and 25 pass points. The siinu—

lated measurement errors were initially set to zero to verify that the

converged solutions (from a wide variety of starting estimates) re-

covered true angles and position coordinates to acceptable precision (all

• angles were recovered to within 1 arc sec and all camera and pass point

coordinates recovered to within .15 ft.). In particular, Tables 2 and

3 summarize the pass point coordinates’ starting estimates, converged

values, and true minus converged residuals in miles; analogous results

are recorded in Table 3 for the orbit and attitude state variables.

This example required approximately one minute of central processor run

time, over half of which was spent manipulating and inverting matrices

• (as opposed to integrating the equations of motion).
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• This example, albeit for an idealized case, demonstrates clearly the

validity of the dynamically constrained approach for the case that the

actual torque history can be accurately modeled. However, this restriction,

along with the rigid satellite assumption are, in fact, major obstacles

- • in practical applications. To circumvent the necessity of modeling

torques and making idealizing assumptions regarding satellite rigidity ,

we incorporate angular rate gyro measurements. The availability of

angular rate measurements permits the luxury of not modeling torques

or body flexibility [in order to correctly generalize Equations (12)],

rather , one directly integrates Equation (17). This approach leads to

two algorithms (batch and sequential), which are applied to example

cases below .
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TABLE 2
Batch Least Squares

Pass Point Solution Summary for Example 2

Point Starting Converged Converged Minus
Number Value (miles) Value (miles) True Residual (ft)

x 1.000000 0.000004 +0.02
1 y 10.500000 10.000006 +0.03

• z 3962.400000 3963.399997 -0.02

x —37.000000 —38.999998 +0.01 •

• - 2 y 40.000000 39.000004 +0.02
• z 3962.000000 3963.000002 +0.01

x —12.000000 —10.000004 —0.02
3 y 42.000000 41.999995 —0.03

z 3962.000000 3962.500025 +0.13

x 44.000000 45.000004 + .02
25 y 431.000000 429.999995 — .03

z 3941.000000 3940.49981 — .10

Notes on error statistics:
• •Mean error (over all 25 pass points) .0001 ft.

•R145 error (over all 25 pass points) 0.05 ft.
.Convergence was achieved from the starting values shown in 4
differential corrections.

• •For brevity , only 4 of the twenty—five pass point coordinates are
-
~~ 

- 
shown.

- • •Since perfect measured values were used in this example, the above
small residuals simply reflect the fact that (a) the algorithm

— 
. has been correctly inplemented , and (b) adequate precision and

convergence tolerances were employed.
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TABLE 3
Batch Solution Summary for Initial Orbit and Attitude

State Var iables (Example 2)

Starting Converged Converged Minus
Value Value True Residual

x 0.004200 miles 0.003801 miLes .005 ft.
y° 0.002700 miles 0.000702 miles .01 ft.
0 4062.181900 miles 4063.181898 miles — .01 ft.
0 —0.000160 miles/sec —0.000060 miles/sec .00 ft/sec.

4.911200 miles/sec 4.851200 miles/sec .00 f t /sec.
z —0.000100 miles/sec —0 .000160 miles/sec .00 ft/see.

—0.000042 rad. —0.000020 rad. +1.0 arc sec
o 0.000100 rad. 0.000000 rad . 0.0 arc sec

0.000028 rad. 0.000030 rad. —0.9 arc sec
—0.002100 rad/sec —0.001100 rad/sec 0.00 rad/sec

O 0.000150 rad/sec 0.000100 rad/sec 0.00 rad/sec
0.000910 rad/sec 0.000990 rad/sec —0.00 rad/sec

Notes :

These values correspond to the same converged solution (after 4
corrections) as the pass point summary of Table 2.

I
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3.3 Example 3: A Batch Estimation Example Using the
V ’ ~ect Ra-te Inte-gflILtion Approach

This example is very similar to example 2, except the rotational

dynamical model consists of equation (17) [instead of equations (12)

and (13)]. The true angular rate history was assumed perfectly measured

by rate gyros and then integrated by 4—cycle Runge—Kutta. Instead of

the Example 1 and 2 “attitude elements” {c~~~(t ) , 0 (t ),i p ( t );

wx
(t
o
)
~
u
y
(t
o
)
~~

l)
z
(t
o~~ + we successively improve instead the initial

orientation angles {~~~~~(t), O
co
(t ) ,Ip (t )} and the gyro bias parameters

(b
x~
b
y~
b
z)• 

The numerical results were identical to Example 2, this

test serves only to indicate the valididty of the basic idea. This

example was repeated , using perfect gyro data but imperfect image

coordinates (with 1 mil measurement error variance). The converged

pass points differed from their true values by an average of 1.8 ft.

with a standard RMS error of 28.9 ft.

In real applications the effects of gyro bias and noise must also

• - 
be considered . Thus, the final example of section 4.0 uses simulated

gyro data (including bias and noise) a sequential (Kalman filter)

estimation algorithm.
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4.0 EXAMPLE 4 SEQUENTIAL TRIANGULATION SUBJECT TO DYNAMICAL CONSTRAINTS.

Based upon the formulation of section 2.5.2, a Kalman sequential

triangulation algorithm has been developed. The 10 photo strip of

examples 2 and 3 is selected as a basis for discussion and comparison of

results. This particular computer program involves a significant amount

of book—keeping to dynamically restructure the various matrices to

correctly reflect the set of pass point coordinates being estimated on

each cycle. As of this writing, this algorithm is still under develop-

ment and test; it is anticipated that this work will culminate with

successful numerical demonstrations in a few months. Although this

particular portion of the work was in addition to the central objectives

of this research project, the authors feel carrying it to completion

will be a valuable contribution. This work will thus be discussed in a

subsequent report, upon completion of the computational aspects.
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5.0 CONCLUSIONS AND RECOI~Q1ENDATIONS

This report details several approaches to the dynamically con-

strained triangulation problem. The formulations are applied to obtain

numerical results for several cases. These results support the following

conclusions:

(1) The most attractive method studied for batch triangulation is
the direct rate integration approaches, as discussed in
sections 2.2 and 3.3.

(2) The sequential (extended Kalman filter) approach , discussed
in sections 2.5 and 4.0, appears more attractive if

(a) pkoce44 no~L4e (due to, for example, integration of
noisy gyro measurements) are degrading the solution
to a considerable degree, and/or

(b) extremely long strips of photography are being t n —
angulated.

We recommend that future refinement development of triangulation

• software include dynamical constraints in one of the two above fashions.
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APPENDIX A

COORDINATE FRAME NOMENCLATURE AND KINEMATI CAL RE LATIONSHIP S

Important to any complex angular motion problem is the choice of

orientation parameters and a clear, systematic nomenclature convention.

The choice of orientation parameters is critical in that numerical

difficulties may be avoided entirely or at least relegated to attitudes

which will never occur in the problem at hand ; a self—evident nomen—

clature is useful (particularly when several coordinate systems are

defined) not only to readers but to the investigators themselves.

Throughout this research effort , Euler angles have been utilized

for coordinate frame orientation. It is a well—known fact that each of

the twelve possible Euler angle sets possesses a kinematical singu-

larity . In order to render the singularity problem as harmless as

possible, the Euler angle sequence for a given coordinate frame relative

orientation has been selected so that encountering the singular orien—

tation is highly unlikely. Future efforts could profit lv involve the use

• of a four parameter orientation description (such as Euler parameters)

so as to avoid the singularity problem entirely .

Unless there are reasons to the contrary , the 1—2—3 Euler angle

sequence will be employed for simplicity of discussion. For future

reference, the 3 x 3 transformation matrix [DEl orienting a frame D

characterized by the orthonormal vector set

{g} = 

~2 
(A.l)

43
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I .
= (A.2)

has the form

[
c4sd ~

‘
~d 01 [cO de 5+

de1 [1 
0 0 1

[DE(p d , Od ,4id )] 
= 

l~~
’
~
d 

clp
d 0 0 1 0 0 C~~ ~~de 

(A.3)

L 0 0 1] L.S.~ 
0 c+d

J Lo _S4
~de 

CI
~d
J

where de’
0
de’ and ~

‘de are the 1—2—3 Euler angles shown in Fig. 4 and

cO = cosO , sO = sinO , etc. The relationship between the twode de de de

• frames is compactly written as the matrix product

• {d} = [DE(+d , Od ,~
Pd
)]{e}. (A.4)

• Obtainable from an elementary kinematic analysis of the frames displayed

in Fig. A4 is the following matrix expression for the components (along

the {d} unit vectors) of the angular velocity of frame D with respect to

frame E:
— D/E .i cO~~c4~ S*

d 
0

D/E 
= 

~
_CO

deS~
)
de c

~
)
d 0 °de (A.5)

D/E L50de 0 1 
~de

Finally , both members of Eq. (A.5) may be premultiplied by the inverse of

the 3 x 3 matrix on the right hand side to obtain expressions for the time

rates of change of the Euler angles :

D/E D/E

‘I ~de r~ de ~~de 0 1 W
]

~

8de 
= cO ~co~~sq~ cOdeclpde 0 W2

/E 
= [B( Ode~li

~de ) ]  ~2
1)h!E 

(A.6) -•

~de 

de [ °°de~~’de COdJ 
D/E D/E

Contained in the above discussion are sub—and superscript conventions

which , while appearing unnecessary in this simple context , will be utilized to

great advantage in conjunction with the several coordinate frames about to

be introduced.
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We now turn to the first of the specific coordinate frames selected

for use in the present problem. The inertial frame N (see Fig. A.2) is

non—rotating and geocentric; it forms the basis for the on—board star

catalog (if on—board star sensing capability exists) and is character—

ized by the unit vector set

-~~ 
= a2 (A.7)

S.  

!13

• An “orbit inertial” frame 0’ (see Fig. A.2)  is defined by the unit

vectors
r-o0—3 r

• 0

r x r
I -o -o

o = , . ~A.8—2 ir x r-o -o

, = I x2~ ~~2 ~~3’

where the subscript o denotes initial conditions. The {o’} unit vectors

are projected onto the (n} unit vectors by the direction cosine matrix

• [O’N ] as

{o ’) = [O’N]{n} (A.9)

The nine constant elements of [O’N] are calculated from the orbit state

vector by
x

O’N = -~31 r
Cy

O’N = — ~~• 32 r
0

z
• r~,tt —

U L
~ 

—

• - 33 r
0

h
10 N21 — 

~~
— (A.lu)

h
—

h

r 
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O’N11 — O’N 220’N33 
— O’N230’N32

• O’N12 — O’ N230’N31 
— O’N210’N33

O ’N 13 — O ’N 210’N32 — O’N220’N31,

where h1 ( y z  — z y )

h (zx — x z )2 0 °  0 0  (A.ll)
h (xy — y x )

- (h
1
2 + h2

2 : h
3
2
)112

The orbit frame 0 (see Fig. A.3) rotates about o~, the orbit normal,

with the constant angular velocity (relative to N or 0’)

~
0/N 

= ~o’°’ 
~~2 ~~2’ 

(A.12)

where ~ is given by

2v 2ir 3/2
= 
(orbit period) 

= — a . (A.l3)

GM is the earth gravitational—mass constant and a is the semi—major axis

of the orbit. The {o} unit vectors are written in terms of the {o’} unit

vectors by
- I {o} = [00’ (t) ] (a’ }, (A. 14)

where

rc0s[1
~
(t — t ) ]  0 —sin[~2(t — t )]1

[O0’(t)] = 0 1 0 (A.15)

[sin[c~(t — t ) ]  0 cos [~ (t — t )]J
Substitution of Eq. (2.9) into Eq. (2.14) yields

{o} = [00’(t)][O’N]{n} (A.l6)

The next coordinate frame (G) considered is one attached to the

strapped—down gyroscopic assembly and hence body—fixed but not nec—

essarily principal. The C frame is generally considered to be the pri—

mary spacecraft axes. The unit vector set {
~

} of Fig. A.3 is charac—

terized by 
~~ 

being the roll axis (nominally along the velocity vector),
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• £2 
being the pitch axis (nominally along the orbit normal), and £3 being

the yaw axis (nominally along the radius vector). The 1—2—3 angles

and 
~go orienting G relative to 0 are hence normally small, thereby

avoiding the kinematical singularity at 8go 90°. The {& unit vectors J
are projected onto the {o} unit vectors by

= [G0(+g0~
O
g0~ Pg0)]{&• (A.l7)

Utilizing Eq. (A.16):

= [GO][0O’J[O’N]{n}. (A.l8)

We now introduce the frame C associated with the terrain camera fields—

of—view. Frame C is characterized by c3 
being along the field—of—view

boresight, with c1 
and c2 being image plane axes. The angles 

~cg’ 0cg’

$ 
and *cg orient the {& unit vectors relative to ~~ via the 3—1—3 rotation

{
~

} = [CG(4
~cg~

Ocg~*cg)]{& (A.19)

= [CG][GO]{O} (A.20)

= [CG][GO] [0O’]{O’} (A 21)

= [CG][G0][O0’][O’N]{n}. (A.22)

A 3—1—3 sequence has been chosen for this orientation interlock, with the

• I 
nominal values

• 
~~cg~°cg~*cg) = (00 ,00 ,00) .  (A.23)

The orientations prescribed in Eqs. (A.23) will generally be subject to

manufacturing misalignments and, in orbit, will likely be subject to

thermal cycling variations of a few arc minutes (these effects, while

important in applications, are not treated here; we note that their

effects can be absorbed into slightly aliased biases, which are sequen-

tially updated).

Finally, we introduce an “orbit C frame”, designated C’, which is

• coincident with frame A at the initial time to, but which thereafter

rotates about the orbit normal — with the constant angular velocity
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C’/N C’/O’
= 

~-~2 — 
~~ 2 

(A. 24)

Frame C’ represents the nominal position of camera frame C and is oriented

relative to frame 0 via

{c’} = c ’O ( q , , G , , i p , ) ] {o}, (A.25 )

Where the 1—2—3 Euler angles •c~o~ 
0c’o’ 

and 
~~~~~~~~ 

are constants (nominally

zero). The relationship between the frames C and C’ is given by

{c) = [CC’ ( p ,, O ,, gi , ) ] {c ’} , (A.26)

wherein the three 1—2—3 angles ~~~ °cc’’ and ~cc’ 
are normally small.

Table Al summarizes the coordinate system definitions and relationships

discussed thus far.

The interlock angles 
~~cg ’ 0cg ’ *cg) will vary about their nominal

calibrated values due to thermal cycling or any other structural de-

formation. The maximum amplitude of such variations is believed to be a

few arc—minutes. We have not yet structured the estimation algorithms

to provide updates of the interlock angles 
~~cg ’ 0cg’ ~cg~~ 

It is

believed that noise in typical rate data (around one arc—sec/sec) is too

large to allow significant refinement of 
~~cg ’ 0cg’ ~

‘cg~~ 
As is noted

in Section 4, these interlock angles are correlated with the estimated

rate bias parameters, a fact which also hampers accurate estimation, but

also makes their recovery less important; small interlock angle errors

can be very nearly accounted for by absorbing these errors into slightly

aliased rate biases (which, in themselves, are not of crucial importance).

Useful for consideration in incorporating attitude dynamical

• constraints are the time rates of change of various Euler angle sets in

terms of the inertial angular velocity components of frame G. Speci—

fically, we will develop expressions for

45

~

— -- -



I

ci
(0 ,-.-‘ Za ci -o 0
-4 I-.

—‘ x —.C) ci - - ci
2. 0

0o ‘—S •-~~ — — — z —‘ci - - - —, ole ci
0. .—. ojo — o .—. —. 0 —. — — -.- ci 411.— — — ci 010 ci 000 ci .‘ ~~~‘ 

.— ‘a z — — —
~ 

.—~ — — 00 z —

0 0 O O Z  ~0 000 ——— ——o — — — _I — — — — —C.) N I N N
N U N  I N N  N U N  N M

1.b

o1 ‘

~~~, 
‘

~~~~
~S-• •~~ ‘— -‘- ‘-S..

U (0 N
01 ‘-1 4$

C’.1
~~~~~~~~. ~ ol 004$ 01 ”’

o, .o~~~~~~~~w I-I -.4 0 1 4
o’ 4J 1.J IJ CO S W  IJ CO “.4 0 .4$ w e4 $ W  0 0 1 4  1 4 4 $  0 1 4 — ’  4$.0

>4 U) 4J 4J 0 0 .00  0 .- I  .0 0 ’  500
i. ~ ~ i s ~~~~~~~~c~ o ~~~~~~ 5 .00 .  4$~~~~ 0 o~ n

~ 
a ‘~-~ i-~ 4.~ ..-~ ~~ oc 14

a ~~~~~~~~ . eu  4-’ 0 1 0
..4 1.i ”4 ~- I W  •.-4 .rI ~~~4$~ r4 c oo “.4 ’rl O o . 0

. - 4 0 Q  ~~ E to � 05  .00 U~~~JCl) 0 04$4 - ’ W “.4 c 1 ’  .5 (0 .-4~~~U it’, “.4 (5 
~~. S 1.1 0 —~ (I 10 ” 4  0 i-I ‘-Ia .~4 4 a ) a It-l 1a a~ ‘0 .-I O W  o” . 4 (0 04 $  5 (5W w ~~ , ~-I (0 ~- I.0 1 4 0 .~~~S .f4 •e .—, iia C J ” 4  i.i l-’ cfl~~’1 i.’ lJ o o w ’ 0to to - cc.,-i

00 0 “.4 ~,-I ~J .‘ • C.) to
• 14 0. ‘4.4 o a o — ~~ n
o~ o~~~o u” . i  ~~~ol o4011&1 ul ~~~~~~~~~~~~~01 o~io. sz

‘4-4
IL, .5 ...4 0 r.4

1-i (5
a a s

i-I O~~~ S 0 ( 5 1 4  01
to “.~~o ‘t~ “ .ia o ~‘0 0 0 i-’ to a 4$

01 to to (5 ( 5 1 4
• 4.~ 1-4 14 1J 1.4 U 4.1 144 1 J  ‘001 CO U 0”.I ‘0 0 .,-4 01

‘-I “4 a 1 4. 0  tO 1 4 0 . 0
• .0 C) p-I p-I 14 1-4 14 .,••4 —(5 0 (5 5 0  “4 0. 5 .-4 0 14.4

U-’ to “4 14 9-, (5 1 4 ( 5
U “ . 4 0 1  O U  I 4 1 1 4  0” . I -I-I .5H 14 . 0 5  4-4 5 0 00 01 ‘4 . i US  4.4
4) 1 4 ( 5  “ . 4 0  1 0 0  “4 ” . I 0 1-i

0 1 5a 0 1 4  ~~.0 .,4 u .~~~~

U)
1.4
0
1J
U •—. -~~01 - __ 

__ 
-

> ci 01 01 o~ ul WI
.—, .- ‘.-. ‘-.. 

_
1.4
•v1a • 1
ao

—4
4.4(0 - -Z 0 0 0 0 ri~
‘-4
to ‘~1

46



-

- tL..1U 
-

(1) ‘ gn’°gn”~
’gn~

(2) 
cn’~ cn’~ cn~

~~ go’~ go’~ go~
(14) cc’’~cc’’~ cc’~~
The relationships for the time rates of change of the angles

4’gn’ 
eg~ and 4’ follow directly from the form of Eqs. (A.6):

‘i GIN G/N
4’ i c 4 ’  — sij, 0 i w  w
gn i gn gn i l  1

~ I cB s4’ cO c4’ 0 I w = [B(O ,4 ’ ) )  w • (A.27)
gn cO gn gn gn gn 2 gn gn 2
• gn~ I G’N N
4’ Lse c4’ sO cij, cO J w w
gn gn gn gn gn gn 3 3

Note that 0 , for the case of a near circular orbit and one vehicle
gn

rotation about £2 per orbit, 
will go to 90° twice per orbit , causing

CO5O
g~ 

to vanish with a resulting singularity in Eqs. (A.27).

The relationships for the time rates of change of the angles •cn’

and 4’cn 
can also be obtained from Eq. (A.6):

• G/N
•

• 
(B(6 an~ 4’an ) I E C G ( + ag~

Oag~ 4’ag ) l  w 2
G

~~ (A.28)

• G/N
4, w
cn 3

The factor of [CG] on the right side of Eq. (A.28) is necessary to convert

the ~~~~ from components along t~~ axes to components 
along c axes. Due

to the form of the matrix B (defined in Eq. (A.6) and repeated in Eq.

• (A.27), singularities would occur twice per orbit for a vehicle which

rotates about £2 once per orbit. Hence, although fairly simple in form,

Eq s. (A.27) and (A.28) share similar difficulties.

We now proceed to develop equations analogous to (A•27) and (A.28)

for the angles 
~

4’go’ 0go’ ~~~ (Case 3). The angular velocity of C

relative to N may be written as

47
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wG/N = ~G/0 + wO/N (A.29)

or

w GIN + w G/N + w G/N = • o + ~ 
(2) 

+ 4, + ~o , (A.30)
~ -~l 

2 £2 ~ £3 
go—l go—2 go —2

where the parenthetical superscripts indicate intermediate frames in the

0 to G transformation. Expressing ol ’
~~~, 2.2 ’ and 02 in terms of £1’

£2’ and &3 enables one to equate coefficients of like unit vectors,

resulting in three scalar equations which have the matrix form

• C/N$ c$ s4’ +s$ sO c4’go 1 go go go go go

0go = [8(0 ,4, ~~~ w — Q c$ c4’ — s$ sO s4, (A.3l)go go 2 go go go go go
• G/N
4’ u —s$go 3 go go

For the case of one vehicle rotation about &2 per near circular orbit,

• the angles •go’ 
0
go’ and go 

remain small so that Eqs. (A.3l) are non—

singular and nearly linear (important in the implementation of estimation

algorithms).

To develop the Case 4 equations for +cc~~ 
0cc ’’ and *cc t

~ 
we begin

with

G/N 
— 

C/ C ’ 
+ ~

C’/N
. (A.32)

Proceeding in a manner analogous to that outlined for Case 3, we arrive at

• G/Nw
3

~cc ’ 
= [B(0 ,, 4’cc ’~~ 

[CG( $cg~
O
cg~*cg

) GIN

. G/N
4,cc~

c$ s4i +s$ sO c4,

- 

~~~~~~~~~~~~~~~~~~~~ 
c$ c 4 ,  - 

~~~~~~~~~~~~ 
(A.33) H

—s$ cOco co
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Like Eqs. (A.31), Eqs. (A.33) are more complex than Eqs. (A.27) or (A.28)

but after the advantages of near linearity and no singularities for the

case of one vehicle rotation about £2 per orbit.
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